UMSM
11-12 Sep 2014 Paris (France)

Participants > Speakers > Demoures Francois

Multisymplectic Lie group variational integrators. Part 2: application to a geometrically exact beam in R^3.
Francois Demoures  1@  , Tudor Ratiu  2@  , François Gay-Balmaz  3@  
1 : Institute of Technology Lausanne  (EPFL)  -  Website
Route Cantonale, 1015 Lausanne Swiss Federal -  Switzerland
2 : Institute of Technology Lausanne  (EPFL)  -  Website
Route Cantonale, 1015 Lausanne -  Switzerland
3 : Centre national de la recherche scientifique  (cnrs)  -  Website
Centre National de la Recherche Scientifique - CNRS
École Normale Supérieure 45 Rue d'Ulm, 75005 Paris, France -  France

The focus of this paper is to study and test a Lie group multisymplectic integrator (Part 1) for the particular case of a geometrically exact beam. We exploit the multisymplectic character of the integrator to analyze the energy and momentum map conservations associated to the temporal and spatial discrete evolutions. This allows us to explore the temporal motion of the beam and the spatial evolution of the wave motion through the beam. We discuss the necessary conditions to obtain a stable displacement in space versus time. 



  • Other
  • Video
e
Online user: 1 RSS Feed