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Multisymplectic Lie group variational integrators
Part 1: derivation and properties

François Demoures, Imperial College, François Gay-Balmaz, École Normale Supérieure/CNRS,
and Tudor Ratiu, École Polytechnique Fédérale de Lausanne

Abstract—Multisymplectic variational integrators are struc-
ture preserving numerical schemes especially designed for PDEs
derived from covariant spacetime Hamilton principles. The
present note summarizes some results obtained in our paper [2].
We present a class of multisymplectic variational integrators for
mechanical systems on Lie groups. The multisymplectic scheme is
derived by applying a discrete version of the spacetime covariant
Hamilton principle. The Lie group structure is used to rewrite the
discrete variational principle in a trivialized formulation which
allows us to make use of the vector space structure of the Lie
algebra. Some aspects of the symplectic character of the discrete
temporal and spatial evolution are given.

Index Terms—multisymplectic structure, discrete mechanics,
variational integrator, Lie group symmetry, discrete momentum
map, discrete global Noether theorem

I. INTRODUCTION AND PRELIMINARIES

Multisymplectic variational integrators are structure pre-
serving numerical schemes designed for solving PDEs arising
from covariant Euler-Lagrange equations. These schemes are
derived from a discrete version of the covariant Hamilton
principle of field theory and preserve, at the discrete level,
the associated multisymplectic geometry.

Multisymplectic variational integrators can be seen as the
spacetime generalization of the well-known variational inte-
grators for classical mechanics (see [10]). Recall that the
discrete Lagrangian flow obtained through a classical vari-
ational integrator preserves a symplectic form. From this
property, it follows, by backward error analysis, that the energy
is approximately preserved. For multisymplectic integrators,
however, the situation is much more involved, the analogue
of the symplectic property being given by a discrete version
of the multisymplectic form formula (see [9]). This formula
is the spacetime analogue of the symplectic property of the
discrete flow associated to variational integrators in time. The
continuous multisymplectic form formula is a property of the
solution of the covariant Euler-Lagrange equations in field
theory, see [6] to which we refer for the multisymplectic
geometry of classical field theory.
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A. Classical and covariant Euler-Lagrange equations

In classical mechanics, the Euler-Lagrange equations as-
sociated to a Lagrangian L : TQ → R are obtained by
computing the critical curves q : [0, T ] → Q of the action
functional S(q) =

∫ T
0
Ldt among curves with prescribed

endpoint values:

d

dε

∣∣∣∣
ε=0

∫ T

0

L(qε(t), q̇ε(t))dt = 0, qε(0) = q0, qε(T ) = qT .

In field theory, curves are replaced by sections of a fiber bundle
π : Y → X . We shall consider the special case of the trivial
fiber bundle π : Y = X × Q → X , where X = [0, T ] ×
[0, L] 3 (t, s), so that the sections are identified with maps
q : [0, T ] × [0, L] → Q. The Lagrangian is defined on the
first jet bundle J1Y → Y of π : Y → X , identified in our
special case with the vector bundle L(TX, TQ) → X × Q
whose fiber at (x, q) is the vector space of all linear maps
TxX → TqQ. Given a Lagrangian L : L(TX, TQ)→ R, the
covariant Euler-Lagrange equations are obtained similarly as
before by computing the critical maps of the action functional
S(q) =

∫ T
0

∫ L
0
Ldtds among maps with prescribed values on

∂X:

d

dε

∣∣∣∣
ε=0

∫ T

0

∫ L

0

L(qε(t, s), ∂tqε(t, s), ∂sqε(t, s))dtds = 0,

(1)
qε|∂X(t, s) = q∂(t, s),

where q∂ : ∂X → Q is given.
It is well-known that if L is regular, the flow of the Euler-

Lagrange equations is symplectic relative to the symplectic
form ΩL on TQ obtained by pulling back the canonical
symplectic form on T ∗Q by the Legendre transform of L.
The field theoretic generalization of this fact is given by the
multisymplectic form formula, see [9].

B. Discrete Euler-Lagrange equations and (multi-) symplec-
ticity

The variational discretization of the classical Euler-
Lagrange equation is obtained by replacing the curve with a
sequence of points (discrete curve) qd : {tj = j∆t}Nj=0 → Q,
qj := qd(t

j), where ∆t is the time step, and by considering
a discrete Lagrangian Ld : Q×Q→ R which we think of as
approximating the action integral of L along the curve segment
between qj and qj+1. The discrete Euler-Lagrange (DEL)
equations are obtained by computing the critical points of
the discrete action functional Sd(qd) :=

∑N−1
j=0 Ld(q

j , qj+1)
among discrete curves with prescribed endpoint values. The
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resulting discrete flow (qj−1, qj) 7→ (qj , qj+1), is symplectic
relative to the symplectic form ΩLd

on Q × Q obtained by
pulling back the canonical symplectic form on T ∗Q by the
discrete Legendre transform of Ld, see [10].

Similarly, the variational discretization of the covariant
Euler-Lagrange equation is obtained by applying a discrete
version of the variational principle (1) for an appropriate
discretization of X and L. In our case, we choose the
discretization of X = [0, T ]× [0, L] given by the set of nodes
Xd = {(j, a) ∈ Z× Z | j = 0, ..., N − 1, a = 0, ..., A− 1}
and the set X4d of elemental subsets given by triangles
4ja = ((j, a), (j + 1, a), (j, a + 1)). A discrete map reads
qd : Xd → Q, qja := qd(j, a). Once a discrete Lagrangian

Ld = Ld(4ja, qja, qj+1
a , qja+1) : X4d ×Q×Q×Q→ R

has been chosen, the discrete covariant Euler-Lagrange
(DCEL) equations are obtained by computing the critical
points of the discrete action functional

Sd(qd) :=

N−1∑
j=0

A−1∑
a=0

Ld(4ja, qja, qj+1
a , qja+1),

among discrete maps with prescribed boundary values. The
resulting discrete scheme is multisymplectic in the sense that it
verifies a discrete version of the multisymplectic form formula,
see [9].

II. COVARIANT EULER-LAGRANGE EQUATIONS ON LIE
GROUPS

We now consider the special case when the configuration
space Q is a Lie group G. This allows us to trivialize the La-
grangian and the equations by using the diffeomorphism vg ∈
TG → (g, g−1vg) ∈ G × g, where g denotes the Lie algebra
of G. For example, given a Lagrangian L : L(TX, TG)→ R,
since X = [0, T ]×[0, L], its trivialization is L̄ : G×g×g→ R
defined by L(g, ġ, g′) = L̄(g, ξ := g−1ġ, η := g−1g′). Using
(1) and computing the variations of ξ(t, s) and η(t, s) induced
from the variations of g(t, s), we get the trivialized covariant
Euler-Lagrange equations (CEL)

∂

∂t

δL̄

δξ
+

∂

∂s

δL̄

δη
= ad∗ξ

δL̄

δξ
+ ad∗η

δL̄

δη
+ g−1 ∂L̄

∂g
. (2)

A. Boundary conditions

If the field g(t, s) has prescribed values only on the temporal
boundary {0, T}× [0, L], then, in addition to (2), the covariant
Hamilton principle also yields the zero traction boundary
conditions

δL̄

δη
(t, 0) =

δL̄

δη
(t, L) = 0, ∀ t. (3)

Similarly, if the field g(t, s) has prescribed values only on the
spatial boundary [0, T ]× {0, L}, then the covariant Hamilton
principle yields the zero momentum boundary conditions

δL̄

δξ
(0, s) =

δL̄

δξ
(T, s) = 0, ∀ s. (4)

B. Space and time evolutionary descriptions

According to the preferred point of view needed for the
application, one can interpret the field q(t, s) ∈ Q either as
a time-evolutionary curve t 7→ q(t) ∈ F([0, L], Q) or as a
spatial-evolutionary curve s 7→ q(s) ∈ F([0, T ], Q), by writing
q(t, s) = q(s)(t) or q(t, s) = q(t)(s). From this, one can
define the two classical Lagrangians

L(q(t), q̇(t)) :=

∫ L

0

L(q(t, s), q̇(t, s), ∂sq(t, s))ds

and

N(q(s), q′(s)) :=

∫ T

0

L(q(t, s), ∂tq(t, s), q
′(t, s))dt.

Let us now comment on the link between the CEL equations
for L and the classical EL equations for L and N.
– If the field has prescribed values only on the temporal
boundary, then one can consider the EL equations for L on
TF([0, L], Q) and they turn out to be equivalent to the CEL
for L together with zero traction boundary conditions ((3) if
Q = G). However, the Lagrangian N has to be considered
on TF0([0, T ], Q), where F0([0, T ], Q) denotes the space
of fields that verify the prescribed boundary conditions at
t = 0, T , in which case these boundary conditions must
be independent on the variable s. The EL equations for
N yield the CEL equations, whereas the zero momentum
boundary conditions ((4) if Q = G) come from the fact
that endpoints conditions are not prescribed when applying
Hamilton principle to N.
– If the field has prescribed values only on the spatial bound-
ary, then we have the reverse situation as the one described
above. In particular, L is now defined on the tangent bundle to
F0([0, L], Q) which consists of fields that verify the prescribed
boundary conditions at s = 0, S, in which case these boundary
conditions must be independent on the time t.

C. The case of Lie groups

When Q = G then, in a similar way with L earlier, one can
associate to L and N the trivialized expressions L̄ = L̄(g, ξ) :
F([0, L], G×g)→ R and N̄ = N̄(g, η) : F([0, L], G×g)→ R
and the trivialized EL equations read

d

dt

∂L

∂ξ
= ad∗ξ

∂L̄

∂ξ
+ g−1 ∂L̄

∂g

resp.,
d

dt

∂N

∂η
= ad∗η

∂N̄

∂η
+ g−1 ∂N̄

∂g
.

D. The G-invariant case: covariant Euler-Poincaré equations
and G-strands

When the Lagrangian L is G-invariant, the CEL equations
(2) yield the covariant Euler-Poincaré equations (CEP)

∂

∂t

δL̄

δξ
+

∂

∂s

δL̄

δη
= ad∗ξ

δL̄

δξ
+ ad∗η

δL̄

δη
, (5)

also called G-strand equations ([8]) since they are useful
for description of strands and beams when G = SE(3),
see [3]. One passes from the CEL equations to the CEP
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equations via the process of covariant Euler-Poincaré reduction
([1]). As explained in [4], one can also obtain the CEP
by using a classical (as opposed to covariant) Lagrangian
reduction process. In this case, one interprets g(t, s) as a time
evolutionary curve t 7→ g(t) ∈ F([0, L], G) and the needed
reduction process is the affine Euler-Poincaré reduction with
cocycle ([5]) applied to the infinite dimensional Lie group
F([0, L], G). The same point of view can be applied for the
spatial evolution, by interpreting g(t, s) as a space evolutionary
curve s 7→ g(s) ∈ F([0, T ], G).

III. MULTISYMPLECTIC INTEGRATORS FOR CEL ON LIE
GROUPS

As we explained earlier, the discrete CEL are obtained
by computing the critical points of the discrete action func-
tional Sd(qd) :=

∑N−1
j=0

∑A−1
a=0 Ld(4ja, qja, qj+1

a , qja+1). In
the special case Q = G, one takes advantage of the Lie
group structure to consider the discrete trivialized Lagrangian
L̄d : X4 ×G× g× g→ R defined by

L̄d(4ja, gja, ξja, ηja) := Ld(4ja, gja, gj+1
a , gja+1),

where ξja := τ−1((gja)−1gj+1
a )/∆t and ηja :=

τ−1((gja)−1gja+1)/∆s are defined with the help of a
given local diffeomorphism τ : g → G in a neighborhood of
the identity, such that τ(0) = e.

A. Discrete CEL on Lie groups
By computing the constrained variations of ξja and ηja in-

duced by free variations of gja, one obtains from δSd(qd) = 0
the discrete CEL equations on Lie groups

1

∆t

(
µja −Ad∗

τ(∆tξj−1
a )

µj−1
a

)
+

1

∆s

(
λja −Ad∗

τ(∆sηja−1)
λja−1

)
= (gja)−1 ∂L̄

∂gja
,

(6)

for all j = 1, ..., N−1 and a = 1, ..., A−1, where the discrete
momenta are defined by

µja :=
(

dR τ−1

∆tξja

)∗ ∂L̄d
∂ξja

, λja :=
(

dR τ−1

∆sηja

)∗ ∂L̄d
∂ηja

,

where dRτ−1
ξ : g → g denotes the right trivialized derivative

of τ−1 : G→ g at g := τ(ξ).

B. Discrete boundary conditions
The discrete variational approach also yields a consistent

discretization of the boundary conditions (3) and (4). The
discrete zero momentum boundary condition reads

1

∆t

(
µj0 −Ad∗

τ(∆tξj−1
0 )

µj−1
0

)
+

1

∆s
λj0 = (gj0)−1 ∂L̄d

∂ξj0
,

Ad∗
τ(∆sηjA−1)

λjA−1 = 0,

for all j = 1, ..., N − 1, and the discrete zero momentum
boundary condition reads

1

∆t
µ0
a +

1

∆s

(
λ0
a −Ad∗τ(∆sη0a−1) λ

0
a−1

)
= (g0

a)−1 ∂L̄d
∂ξ0
a

,

Ad∗
τ(∆tξN−1

a )
µN−1
a = 0,

for all a = 1, ..., A− 1.

C. Discrete temporal and spatial evolution
In complete analogy with the definition of the evolutionary

Lagrangian L̄ and N̄, we can define the discrete Lagrangians

L̄d(g
j , ξj) =

A−1∑
a=0

L̄d(4ja, gja, ξja, ηja),

N̄d(ga,ηa) =

N−1∑
j=0

L̄d(4ja, gja, ξja, ηja),

where we assumed that L̄d does not depend explicitly
on the discrete time and discrete space coordinates. These
discrete Lagrangians are associated to the discrete tempo-
ral evolution gj = (gj0, ..., g

j
A), j = 0, ..., N and spa-

tial evolution ga = (g0
a, ..., g

N
a ) a = 0, ..., N , where

ξj := 1
∆tτ

−1
(
(gj)−1gj+1

)
∈ gA+1 and ηa :=

1
∆sτ

−1
(
(ga)−1ga+1

)
∈ gN+1. The discrete CEL equations

associated to L̄d and the discrete EL equations associated to
L̄d and N̄d are related exactly as their continuous counterparts,
as explained in §II-B. This relation depends on the imposed
boundary conditions.

As mentioned earlier, the CEL (6) associated to L̄d yield a
multisymplectic integrator. The interpretation of these equa-
tions as discrete EL equations associated to L̄d, resp., N̄d
allows us to study the symplecticity in time, resp., in space, of
the numerical scheme. Of course, for such a study it is crucial
to specify the prescribed boundary conditions.

D. G-invariant case
When the discrete covariant Lagrangian is G-invariant, i.e.,

L̄d(4ja, gja, ξja, ηja) = `d(4ja, ξja, ηja), then the discrete CEL
(6) yield a discrete version of the CEP equations (or G-
strand equations) (5). They are obtained simply by writing
∂L̄/∂gja = 0 in (6) and arise from a discrete covariant
Lagrangian reduction by symmetry. Note that the discrete
CEP equations for `d(4ja, ξja, ηja) can also be interpreted as
a symmetry reduced version of the discrete EL equations for
Ld(g

j ,gj+1). To a discrete spacetime covariant reduction for
Ld thus corresponds a discrete dynamic reduction for Ld.
The same comment applies to Nd. It would be interesting to
analyze the link between this observation and the approach
carried out in [4] which relates, in the continuous case, the
covariant and dynamic reductions in principal bundle field
theories.

E. Covariant and classical momentum maps
One of the attractive property of multisymplectic integrators

is that in presence of a symmetry of the Lagrangian, they
allow for the definition of a discrete version of covariant
momentum maps and they verify a discrete version of the co-
variant Noether theorem. As we have seen, the multisymplectic
scheme (6) can also be written as a discrete (classical) EL
equation for the discrete Lagrangians Ld and Nd. Therefore,
the multisymplectic integrator also verifies a discrete version
of the classical Noether theorem associated to the temporal
or spatial evolution. The relation between the discrete covari-
ant and classical Noether theorems depends however on the
prescribed boundary conditions, as explained in details in [2].
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